Identification of Genome-Scale Metabolic Network Models Using Experimentally Measured Flux Profiles

نویسندگان

  • Markus J. Herrgård
  • Stephen S. Fong
  • Bernhard O. Palsson
چکیده

Genome-scale metabolic network models can be reconstructed for well-characterized organisms using genomic annotation and literature information. However, there are many instances in which model predictions of metabolic fluxes are not entirely consistent with experimental data, indicating that the reactions in the model do not match the active reactions in the in vivo system. We introduce a method for determining the active reactions in a genome-scale metabolic network based on a limited number of experimentally measured fluxes. This method, called optimal metabolic network identification (OMNI), allows efficient identification of the set of reactions that results in the best agreement between in silico predicted and experimentally measured flux distributions. We applied the method to intracellular flux data for evolved Escherichia coli mutant strains with lower than predicted growth rates in order to identify reactions that act as flux bottlenecks in these strains. The expression of the genes corresponding to these bottleneck reactions was often found to be downregulated in the evolved strains relative to the wild-type strain. We also demonstrate the ability of the OMNI method to diagnose problems in E. coli strains engineered for metabolite overproduction that have not reached their predicted production potential. The OMNI method applied to flux data for evolved strains can be used to provide insights into mechanisms that limit the ability of microbial strains to evolve towards their predicted optimal growth phenotypes. When applied to industrial production strains, the OMNI method can also be used to suggest metabolic engineering strategies to improve byproduct secretion. In addition to these applications, the method should prove to be useful in general for reconstructing metabolic networks of ill-characterized microbial organisms based on limited amounts of experimental data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications

Background: A genome-scale metabolic network model (GEM) is a mathematical representation of an organism’s metabolism. Today, GEMs are popular tools for computationally simulating the biotechnological processes and for predicting biochemical properties of (engineered) strains.Objectives: In the present study, we have evaluated the predictive power of two ...

متن کامل

Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum

BACKGROUND In silico genome-scale metabolic models enable the analysis of the characteristics of metabolic systems of organisms. In this study, we reconstructed a genome-scale metabolic model of Corynebacterium glutamicum on the basis of genome sequence annotation and physiological data. The metabolic characteristics were analyzed using flux balance analysis (FBA), and the results of FBA were v...

متن کامل

Investigation on metabolism of cisplatin resistant ovarian cancer using a genome scale metabolic model and microarray data

Objective(s): Many cancer cells show significant resistance to drugs that kill drug sensitive cancer cells and non-tumor cells and such resistance might be a consequence of the difference in metabolism. Therefore, studying the metabolism of drug resistant cancer cells and comparison with drug sensitive and normal cell lines is the objective of this research. Material and Methods:Metabolism of c...

متن کامل

Reconstructed Metabolic Network Models Predict Flux-Level Metabolic Reprogramming in Glioblastoma

Developments in genome scale metabolic modeling techniques and omics technologies have enabled the reconstruction of context-specific metabolic models. In this study, glioblastoma multiforme (GBM), one of the most common and aggressive malignant brain tumors, is investigated by mapping GBM gene expression data on the growth-implemented brain specific genome-scale metabolic network, and GBM-spec...

متن کامل

Genome-scale metabolic networks.

During the last decade, models have been developed to characterize cellular metabolism at the level of an entire metabolic network. The main concept that underlies whole-network metabolic modeling is the identification and mathematical definition of constraints. Here, we review large-scale metabolic network modeling, in particular, stoichiometric- and constraint-based approaches. Although many ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS Computational Biology

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2006